Copyright © 2022-2024 aizws.net · 网站版本: v1.2.6·内部版本: v1.23.3·
页面加载耗时 0.00 毫秒·物理内存 63.3MB ·虚拟内存 1300.0MB
欢迎来到 AI 中文社区(简称 AI 中文社),这里是学习交流 AI 人工智能技术的中文社区。 为了更好的体验,本站推荐使用 Chrome 浏览器。
神经网络算法预测销量高低:
import pandas as pd from keras.models import Sequential from keras.layers.core import Dense, Activation def cm_plot(y, yp): from sklearn.metrics import confusion_matrix # 导入混淆矩阵函数 cm = confusion_matrix(y, yp) # 混淆矩阵 import matplotlib.pyplot as plt # 导入作图库 plt.matshow(cm, cmap=plt.cm.Greens) # 画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。 plt.colorbar() # 颜色标签 for x in range(len(cm)): # 数据标签 for y in range(len(cm)): plt.annotate(cm[x, y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') # 坐标轴标签 plt.xlabel('Predicted label') # 坐标轴标签 return plt # 参数初始化 inputfile = '../Data/sales_data.xls' data = pd.read_excel(inputfile, index_col=u'序号') # 导入数据 # 数据是类别标签,要将它转换为数据 # 用1来表示“好” “是” “高” 这 3 个属性,用 0 来表示 “坏” “否” “低” data[data == u'好'] = 1 data[data == u'是'] = 1 data[data == u'高'] = 1 data[data != 1] = 0 x = data.iloc[:, :3].values.astype(int) y = data.iloc[:, 3].values.astype(int) model = Sequential() # 建立模型 model.add(Dense(input_dim=3, units=10, activation='relu')) # 用relu函数作为激活函数,能够大幅度提供准确度 model.add(Dense(input_dim=10, units=1, activation='sigmoid')) # 由于是 0-1 输出,用 sigmoid 函数作为激活函数 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 求解方法我们指定用 adam,还有sgd、rmsprop等可选 model.fit(x, y, epochs=1000, batch_size=10) # 训练模型,学习1000次,每次以10个样本为一个batch进行迭代 yp = model.predict_classes(x).reshape(len(y)) # 分类预测 cm_plot(y, yp).show() # 显示混淆矩阵可视化结果
效果如下:
推测出每个人的性别:
import numpy as np def sigmoid(x): # our activation function: f(x) = 1 / (1 * e^(-x)) return 1 / (1 + np.exp(-x)) class Neuron(): def __init__(self, weights, bias): self.weights = weights self.bias = bias def feedforward(self, inputs): # weight inputs, add bias, then use the activation function total = np.dot(self.weights, inputs) + self.bias return sigmoid(total) weights = np.array([0, 1]) # w1 = 0, w2 = 1 bias = 4 n = Neuron(weights, bias) # inputs x = np.array([2, 3]) # x1 = 2, x2 = 3 print(n.feedforward(x)) # 0.9990889488055994 class OurNeuralNetworks(): """ A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1) Each neural has the same weights and bias: - w = [0, 1] - b = 0 """ def __init__(self): weights = np.array([0, 1]) bias = 0 # The Neuron class here is from the previous section self.h1 = Neuron(weights, bias) self.h2 = Neuron(weights, bias) self.o1 = Neuron(weights, bias) def feedforward(self, x): out_h1 = self.h1.feedforward(x) out_h2 = self.h2.feedforward(x) # The inputs for o1 are the outputs from h1 and h2 out_o1 = self.o1.feedforward(np.array([out_h1, out_h2])) return out_o1 network = OurNeuralNetworks() x = np.array([2, 3]) print(network.feedforward(x)) # 0.7216325609518421 def mse_loss(y_true, y_pred): # y_true and y_pred are numpy arrays of the same length return ((y_true - y_pred) ** 2).mean() y_true = np.array([1, 0, 0, 1]) y_pred = np.array([0, 0, 0, 0]) print(mse_loss(y_true, y_pred)) # 0.5 def sigmoid(x): # Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x)) def deriv_sigmoid(x): # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x)) fx = sigmoid(x) return fx * (1 - fx) def mse_loss(y_true, y_pred): # y_true and y_pred are numpy arrays of the same length return ((y_true - y_pred) ** 2).mean() class OurNeuralNetwork(): """ A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1) *** DISCLAIMER *** The code below is intend to be simple and educational, NOT optimal. Real neural net code looks nothing like this. Do NOT use this code. Instead, read/run it to understand how this specific network works. """ def __init__(self): # weights self.w1 = np.random.normal() self.w2 = np.random.normal() self.w3 = np.random.normal() self.w4 = np.random.normal() self.w5 = np.random.normal() self.w6 = np.random.normal() # biases self.b1 = np.random.normal() self.b2 = np.random.normal() self.b3 = np.random.normal() def feedforward(self, x): # x is a numpy array with 2 elements, for example [input1, input2] h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1) h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2) o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3) return o1 def train(self, data, all_y_trues): """ - data is a (n x 2) numpy array, n = # samples in the dataset. - all_y_trues is a numpy array with n elements. Elements in all_y_trues correspond to those in data. """ learn_rate = 0.1 epochs = 1000 # number of times to loop through the entire dataset for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): # - - - Do a feedforward (we'll need these values later) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2) sum_o1 = self.w5 * x[0] + self.w6 * x[1] + self.b3 o1 = sigmoid(sum_o1) y_pred = o1 # - - - Calculate partial derivatives. # - - - Naming: d_L_d_w1 represents "partial L / partial w1" d_L_d_ypred = -2 * (y_true - y_pred) # Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) # Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1) # Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_w4 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_b2 = deriv_sigmoid(sum_h2) # - - - update weights and biases # Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 # Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 # Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 # - - - Calculate total loss at the end of each epoch if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) print("Epoch %d loss: %.3f", (epoch, loss)) # Define dataset data = np.array([ [-2, -1], # Alice [25, 6], # Bob [17, 4], # Charlie [-15, -6] # diana ]) all_y_trues = np.array([ 1, # Alice 0, # Bob 0, # Charlie 1 # diana ]) # Train our neural network! network = OurNeuralNetwork() network.train(data, all_y_trues) # Make some predictions emily = np.array([-7, -3]) # 128 pounds, 63 inches frank = np.array([20, 2]) # 155 pounds, 68 inches print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M
进行训练的话,如果直接用原图进行训练,也是可以的(就如我们最喜欢Mnist手写体),但是大部分图片长和宽不一样,直接resize的话容易出问题。除去resize的问题外,有些时候数据不足该怎么办 ...