Copyright © 2022-2025 aizws.net · 网站版本: v1.2.6·内部版本: v1.23.4·
页面加载耗时 0.00 毫秒·物理内存 68.1MB ·虚拟内存 1300.8MB
欢迎来到 AI 中文社区(简称 AI 中文社),这里是学习交流 AI 人工智能技术的中文社区。 为了更好的体验,本站推荐使用 Chrome 浏览器。
ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。
ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。
import numpy as np a = np.arange(10) s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2 print (a[s])
输出结果为:
[2 4 6]
以上范例中,我们首先通过 arange() 函数创建 ndarray 对象。 然后,分别设置起始,终止和步长的参数为 2,7 和 2。
我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:
import numpy as np a = np.arange(10) b = a[2:7:2] # 从索引 2 开始到索引 7 停止,间隔为 2 print(b)
输出结果为:
[2 4 6]
冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。
import numpy as np a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9] b = a[5] print(b)
输出结果为:
5
import numpy as np a = np.arange(10) print(a[2:])
输出结果为:
[2 3 4 5 6 7 8 9]
import numpy as np a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9] print(a[2:5])
输出结果为:
[2 3 4]
多维数组同样适用上述索引提取方法:
import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print(a) # 从某个索引处开始切割 print('从数组索引 a[1:] 处开始切割') print(a[1:])
输出结果为:
[[1 2 3] [3 4 5] [4 5 6]] 从数组索引 a[1:] 处开始切割 [[3 4 5] [4 5 6]]
切片还可以包括省略号 …,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。
import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print (a[...,1]) # 第2列元素 print (a[1,...]) # 第2行元素 print (a[...,1:]) # 第2列及剩下的所有元素
输出结果为:
[2 4 5] [3 4 5] [[2 3] [4 5] [5 6]]
NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。1. 整数数组索引。2. 布尔索引:我们可以通过一个布尔数组来索引目标数组。布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。