Copyright © 2022-2025 aizws.net · 网站版本: v1.2.6·内部版本: v1.23.4·
页面加载耗时 0.00 毫秒·物理内存 68.1MB ·虚拟内存 1300.8MB
欢迎来到 AI 中文社区(简称 AI 中文社),这里是学习交流 AI 人工智能技术的中文社区。 为了更好的体验,本站推荐使用 Chrome 浏览器。
NumPy 算术函数包含简单的加减乘除: add(),subtract(),multiply() 和 divide()。
需要注意的是数组必须具有相同的形状或符合数组广播规则。
import numpy as np a = np.arange(9, dtype = np.float_).reshape(3,3) print ('第一个数组:') print (a) print ('\n') print ('第二个数组:') b = np.array([10,10,10]) print (b) print ('\n') print ('两个数组相加:') print (np.add(a,b)) print ('\n') print ('两个数组相减:') print (np.subtract(a,b)) print ('\n') print ('两个数组相乘:') print (np.multiply(a,b)) print ('\n') print ('两个数组相除:') print (np.divide(a,b))
输出结果为:
第一个数组: [[0. 1. 2.] [3. 4. 5.] [6. 7. 8.]] 第二个数组: [10 10 10] 两个数组相加: [[10. 11. 12.] [13. 14. 15.] [16. 17. 18.]] 两个数组相减: [[-10. -9. -8.] [ -7. -6. -5.] [ -4. -3. -2.]] 两个数组相乘: [[ 0. 10. 20.] [30. 40. 50.] [60. 70. 80.]] 两个数组相除: [[0. 0.1 0.2] [0.3 0.4 0.5] [0.6 0.7 0.8]]
此外 Numpy 也包含了其他重要的算术函数。
numpy.reciprocal() 函数返回参数逐元素的倒数。如 1/4 倒数为 4/1。
import numpy as np a = np.array([0.25, 1.33, 1, 100]) print ('我们的数组是:') print (a) print ('\n') print ('调用 reciprocal 函数:') print (np.reciprocal(a))
输出结果为:
我们的数组是: [ 0.25 1.33 1. 100. ] 调用 reciprocal 函数: [4. 0.7518797 1. 0.01 ]
numpy.power() 函数将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的幂。
import numpy as np a = np.array([10,100,1000]) print ('我们的数组是;') print (a) print ('\n') print ('调用 power 函数:') print (np.power(a,2)) print ('\n') print ('第二个数组:') b = np.array([1,2,3]) print (b) print ('\n') print ('再次调用 power 函数:') print (np.power(a,b))
输出结果为:
我们的数组是; [ 10 100 1000] 调用 power 函数: [ 100 10000 1000000] 第二个数组: [1 2 3] 再次调用 power 函数: [ 10 10000 1000000000]
numpy.mod() 计算输入数组中相应元素的相除后的余数。 函数 numpy.remainder() 也产生相同的结果。
import numpy as np a = np.array([10,20,30]) b = np.array([3,5,7]) print ('第一个数组:') print (a) print ('\n') print ('第二个数组:') print (b) print ('\n') print ('调用 mod() 函数:') print (np.mod(a,b)) print ('\n') print ('调用 remainder() 函数:') print (np.remainder(a,b))
输出结果为:
第一个数组: [10 20 30] 第二个数组: [3 5 7] 调用 mod() 函数: [1 0 2] 调用 remainder() 函数: [1 0 2]
NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。 1. numpy.amin() 和 numpy.amax():numpy.amin() 用于计算数组中的元素沿指定轴的最小值。numpy.amax() 用于计算数组中的元素沿指定轴的最大值。