Kotlin 泛型
泛型,即 "参数化类型",将类型参数化,可以用在类,接口,方法上。
与 Java 一样,Kotlin 也提供泛型,为类型安全提供保证,消除类型强转的烦恼。
声明一个泛型类:
class Box<T>(t: T) { var value = t }
创建类的范例时我们需要指定类型参数:
val box: Box<Int> = Box<Int>(1) // 或者 val box = Box(1) // 编译器会进行类型推断,1 类型 Int,所以编译器知道我们说的是 Box<Int>。
以下范例向泛型类 Box 传入整型数据和字符串:
class Box<T>(t : T) { var value = t } fun main(args: Array<String>) { var boxInt = Box<Int>(10) var boxString = Box<String>("Runoob") println(boxInt.value) println(boxString.value) }
输出结果为:
10 Runoob
定义泛型类型变量,可以完整地写明类型参数,如果编译器可以自动推定类型参数,也可以省略类型参数。
Kotlin 泛型函数的声明与 Java 相同,类型参数要放在函数名的前面:
fun <T> boxIn(value: T) = Box(value) // 以下都是合法语句 val box4 = boxIn<Int>(1) val box5 = boxIn(1) // 编译器会进行类型推断
在调用泛型函数时,如果可以推断出类型参数,可以省略泛型参数。
以下范例创建了泛型函数 doPrintln,函数根据传入的不同类型做相应处理:
fun main(args: Array<String>) { val age = 23 val name = "runoob" val bool = true doPrintln(age) // 整型 doPrintln(name) // 字符串 doPrintln(bool) // 布尔型 } fun <T> doPrintln(content: T) { when (content) { is Int -> println("整型数字为 $content") is String -> println("字符串转换为大写:${content.toUpperCase()}") else -> println("T 不是整型,也不是字符串") } }
输出结果为:
整型数字为 23 字符串转换为大写:RUNOOB T 不是整型,也不是字符串
1. 泛型约束
我们可以使用泛型约束来设定一个给定参数允许使用的类型。
Kotlin 中使用 : 对泛型的类型上限进行约束。
最常见的约束是上界(upper bound):
fun <T : Comparable<T>> sort(list: List<T>) { // …… }
Comparable
sort(listOf(1, 2, 3)) // OK。Int 是 Comparable<Int> 的子类型 sort(listOf(HashMap<Int, String>())) // 错误:HashMap<Int, String> 不是 Comparable<HashMap<Int, String>> 的子类型
默认的上界是 Any?。
对于多个上界约束条件,可以用 where 子句:
fun <T> copyWhenGreater(list: List<T>, threshold: T): List<String> where T : CharSequence, T : Comparable<T> { return list.filter { it > threshold }.map { it.toString() } }
2. 型变
Kotlin 中没有通配符类型,它有两个其他的东西:声明处型变(declaration-site variance)与类型投影(type projections)。
声明处型变
声明处的类型变异使用协变注解修饰符:in、out,消费者 in, 生产者 out。
使用 out 使得一个类型参数协变,协变类型参数只能用作输出,可以作为返回值类型但是无法作为入参的类型:
// 定义一个支持协变的类 class Runoob<out A>(val a: A) { fun foo(): A { return a } } fun main(args: Array<String>) { var strCo: Runoob<String> = Runoob("a") var anyCo: Runoob<Any> = Runoob<Any>("b") anyCo = strCo println(anyCo.foo()) // 输出 a }
in 使得一个类型参数逆变,逆变类型参数只能用作输入,可以作为入参的类型但是无法作为返回值的类型:
// 定义一个支持逆变的类 class Runoob<in A>(a: A) { fun foo(a: A) { } } fun main(args: Array<String>) { var strDCo = Runoob("a") var anyDCo = Runoob<Any>("b") strDCo = anyDCo }
3. 星号投射
有些时候, 你可能想表示你并不知道类型参数的任何信息, 但是仍然希望能够安全地使用它. 这里所谓"安全地使用"是指, 对泛型类型定义一个类型投射, 要求这个泛型类型的所有的实体范例, 都是这个投射的子类型。
对于这个问题, Kotlin 提供了一种语法, 称为 星号投射(star-projection):
- 假如类型定义为 Foo<out T> , 其中 T 是一个协变的类型参数, 上界(upper bound)为 TUpper ,Foo<> 等价于 Foo<out TUpper> . 它表示, 当 T 未知时, 你可以安全地从 Foo<> 中 读取TUpper 类型的值.
- 假如类型定义为 Foo<in T> , 其中 T 是一个反向协变的类型参数, Foo<> 等价于 Foo<inNothing> . 它表示, 当 T 未知时, 你不能安全地向 Foo<> 写入 任何东西.
- 假如类型定义为 Foo<T> , 其中 T 是一个协变的类型参数, 上界(upper bound)为 TUpper , 对于读取值的场合, Foo<*> 等价于 Foo<out TUpper> , 对于写入值的场合, 等价于 Foo<in Nothing> .
如果一个泛型类型中存在多个类型参数, 那么每个类型参数都可以单独的投射. 比如, 如果类型定义为interface Function<in T, out U> , 那么可以出现以下几种星号投射:
- Function<*, String> , 代表 Function<in Nothing, String> ;
- Function<Int, *> , 代表 Function<Int, out Any?> ;
- Function<, > , 代表 Function<in Nothing, out Any?> .
注意: 星号投射与 Java 的原生类型(raw type)非常类似, 但可以安全使用
下一章:Kotlin 枚举类
枚举类最基本的用法是实现一个类型安全的枚举。枚举常量用逗号分隔,每个枚举常量都是一个对象。enum class Color{ RED,BLACK,BLUE,GREEN,WHITE} 1. 枚举初始化每一个枚 ...