年轻人的第一个多模态大模型:1080Ti轻松运行,已开源在线可玩

2024-01-29 发布 · 浏览198次 · 点赞0次 · 收藏0次

一款名为Vary-toy的“年轻人的第一个多模态大模型”来了!

模型大小不到2B,消费级显卡可训练,GTX1080ti 8G的老显卡轻松运行。

想将一份文档图片转换成Markdown格式?以往需要文本识别、布局检测和排序、公式表格处理、文本清洗等多个步骤。

现在只需一句话命令:

图片

无论中英文,图片中的大段文字都能分分钟提取出来:

图片

对一张图做对象检测,还是能给出具体坐标的那种:

图片

这项研究由来自旷视、国科大、华中大的研究人员共同提出。

据介绍,Vary-toy虽小,但却几乎涵盖了目前LVLM(大型视觉语言模型)主流研究中的所有能力:文档OCR识别(Document OCR)、视觉定位(Visual Grounding)、图像描述(Image Caption)、视觉问答(VQA)

图片

现在,Vary-toy代码和模型均已开源,并有在线demo可试玩。

图片

网友一边表示感兴趣,一边关注点在于旧·GTX1080,心情belike:

图片

“缩小版”Vary

其实,早在去年12月Vary团队就发布了Vary的首项研究成果“Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models”。

研究人员指出CLIP视觉词表在密集感知能力上的不足,并用一种简单有效的扩充词表方案给出了一种全新的OCR范式。

Vary发布后得到广泛关注,目前Github1.2k+ star,但也有不少人因为资源受限运行不了。

考虑到目前开源得很好且性能出色的“小”VLM比较少,于是该团队又新发布了号称是“年轻人的第一个多模大模型”的Vary-toy。

与Vary相比,Vary-toy除了小之外,也训练了更强的视觉词表,新的词表不再将模型局限于文档级OCR,而是给出了一个更加通用和全面的视觉词表,其不仅能做文档级OCR,还能做通用视觉目标检测。

那这究竟是如何做到的?

Vary-toy的模型结构和训练流程如下图所示,总的来说,训练共分两个阶段。

图片

首先在第一阶段,使用Vary-tiny+结构,预训练出一个相比原版Vary更好的视觉词表,新的视觉词表解决了原Vary只用它做文档级OCR的网络容量浪费问题、以及没有充分利用到SAM预训练优势的问题。

然后在第二阶段中,将第一阶段中训好的视觉词表merge到最终结构进行multi-task training/SFT。

众所周知,一个好的数据配比对于产生一个能力全面的VLM是至关重要的。

因此在预训练阶段,Vary-toy使用了5种任务类型的数据构建对话,数据配比和示例prompt如下图所示:

图片

而在SFT阶段,只使用了LLaVA-80K数据。更多的技术细节,可以查看Vary-toy的技术报告。

实验测试结果

Vary-toy在DocVQA、ChartQA、RefCOCO、MMVet四个基准测试的得分如下:

图片

Vary-toy在DocVQA上可以达到 65.6%的ANLS,在ChartQA上达到59.1%的准确率,RefCOCO88.1%的准确率:

图片

MMVet上可以达到29%准确率,无论是从基准测试评分上还是可视化效果上,不到2B的Vary-toy甚至能和一些流行的7B模型的性能一较高下。

图片

项目链接:
[1]https://arxiv.org/abs/2401.12503

[3]https://varytoy.github.io/

年轻人的第一个多模态大模型:1080Ti轻松运行,已开源在线可玩 - AI 资讯 - 资讯 - AI 中文社区

声明:本文转载自51CTO,转载目的在于传递更多信息,并不代表本社区赞同其观点和对其真实性负责,本文只提供参考并不构成任何建议,若有版权等问题,点击这里。本站拥有对此声明的最终解释权。如涉及作品内容、版权和其它问题,请联系我们删除,我方收到通知后第一时间删除内容。

点赞(0) 收藏(0)
0条评论
珍惜第一个评论,它能得到比较好的回应。
评论

游客
登录后再评论
  • 鸟过留鸣,人过留评。
  • 和谐社区,和谐点评。