Meta AI 推出 LIGER 混合检索 AI 模型,计算效率与推荐精度兼得

2025-01-03 发布 · 浏览36次 · 点赞0次 · 收藏0次

1 月 2 日消息,Meta AI 的研究人员提出了一种名为 LIGER 的新型 AI 模型,巧妙地结合密集检索和生成检索的优势,显著提升了生成式推荐系统的性能。

LIGER 有效地解决了传统推荐系统在计算资源、存储需求和冷启动项目处理上的难题,为构建更高效、更精准的推荐系统提供了新的思路。

项目背景

想要把用户与相关内容、产品或服务联系起来,推荐系统是其中重要一环。该领域的常规方法是密集检索(Dense retrieval),利用序列建模来计算项目和用户表示。

但这种方法由于要嵌入每个项目,因此需要大量的计算资源和存储。随着数据集的增长,这些要求变得越来越繁重,限制了它们的可扩展性。

而另一种新兴的方法叫做生成检索(Generative retrieval),通过生成模型预测项目索引来减少存储需求,但该方式存在性能问题,在冷启动项目(用户交互有限的新项目)中表现尤为明显。

项目介绍

Meta AI 公司联合威斯康星大学麦迪逊分校、ELLIS Unit、LIT AI Lab、机器学习研究所、JKU Linz 等机构,混合密集检索和生成检索,推出了 LIGER(LeveragIng dense retrieval for GEnerative Retrieval)模型。

该模型混合了生成检索的计算效率和密集检索的精度,利用生成检索生成候选集、语义 ID 和文本属性的项目表示,再通过密集检索技术进行精练,平衡了效率和准确性。

LIGER 采用双向 Transformer 编码器和生成解码器。密集检索部分整合了项目文本表示、语义 ID 和位置嵌入,并使用余弦相似度损失进行优化。生成部分使用波束搜索根据用户交互历史预测后续项目的语义 ID。

通过这种混合推理过程,LIGER 降低了计算需求,同时保持了推荐质量。LIGER 还能很好地泛化到未见过的项目,解决了先前生成模型的关键限制。

LIGER 性能

在 Amazon Beauty、Sports、Toys 和 Steam 等基准数据集上的评估显示,LIGER 的性能持续优于 TIGER 和 UniSRec 等现有最先进模型。

例如,在 Amazon Beauty 数据集上,LIGER 对冷启动项目的 Recall@10 得分为 0.1008,而 TIGER 为 0.0。在 Steam 数据集上,LIGER 的 Recall@10 达到了 0.0147,同样优于 TIGER 的 0.0。

随着生成方法检索的候选数量增加,LIGER 与密集检索的性能差距缩小,展现了其适应性和效率。

附上参考地址

Meta AI 推出 LIGER 混合检索 AI 模型,计算效率与推荐精度兼得 - AI 资讯 - 资讯 - AI 中文社区

声明:本文转载自IT 之家,转载目的在于传递更多信息,并不代表本社区赞同其观点和对其真实性负责,本文只提供参考并不构成任何建议,若有版权等问题,点击这里。本站拥有对此声明的最终解释权。如涉及作品内容、版权和其它问题,请联系我们删除,我方收到通知后第一时间删除内容。

点赞(0) 收藏(0)
0条评论
珍惜第一个评论,它能得到比较好的回应。
评论

游客
登录后再评论
  • 鸟过留鸣,人过留评。
  • 和谐社区,和谐点评。