1.15. 等式回归

IsotonicRegression 类对数据进行非降函数拟合. 它解决了如下的问题:

  • 最小化 \sum_i w_i (y_i - \hat{y}_i)^2
  • 服从于 \hat{y}_{min} = \hat{y}_1 \le \hat{y}_2 ... \le \hat{y}_n = \hat{y}_{max}

其中每一个 w_i 是 strictly 正数而且每个 y_i 是任意实 数. 它生成一个由平方误差接近的不减元素组成的向量.实际上这一些元素形成 一个分段线性的函数.

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_isotonic_regression_0011.png

下一章:1.16. 概率校准

执行分类时, 您经常希望不仅可以预测类标签, 还要获得相应标签的概率. 这个概率给你一些预测的信心. 一些模型可以给你贫乏的概率估计, 有些甚至不支持概率预测. 校准模块可以让您更好地校准给定模型的概率, 或添加对概率 ...