Copyright © 2022-2025 aizws.net · 网站版本: v1.2.6·内部版本: v1.23.4·
页面加载耗时 0.00 毫秒·物理内存 66.0MB ·虚拟内存 1300.5MB
欢迎来到 AI 中文社区(简称 AI 中文社),这里是学习交流 AI 人工智能技术的中文社区。 为了更好的体验,本站推荐使用 Chrome 浏览器。
Apache Spark是一个闪电般快速的实时处理框架。它进行内存计算以实时分析数据。由于 Apache Hadoop MapReduce 仅执行批处理并且缺乏实时处理功能,因此它开始出现。因此,引入了Apache Spark,因为它可以实时执行流处理,也可以处理批处理。
除了实时和批处理之外,Apache Spark还支持交互式查询和迭代算法。Apache Spark有自己的集群管理器,可以托管其应用程序。它利用Apache Hadoop进行存储和处理。它使用 HDFS (Hadoop分布式文件系统)进行存储,它也可以在 YARN 上运行Spark应用程序。
Apache Spark是用 Scala编程语言 编写的。为了用Spark支持Python,Apache Spark社区发布了一个工具PySpark。使用PySpark,您也可以使用Python编程语言中的 RDD 。正是由于一个名为 Py4j 的库,他们才能实现这一目标。
PySpark提供了 PySpark Shell ,它将Python API链接到spark核心并初始化Spark上下文。今天,大多数数据科学家和分析专家都使用Python,因为它具有丰富的库集。将Python与Spark集成对他们来说是一个福音。
PySpark 简介 | PySpark 环境设置 | PySpark SparkContext | PySpark RDD | PySpark广播与累积器 |
PySpark SparkConf | PySpark SparkFiles | PySpark StorageLevel | PySpark MLlib | PySpark Serializers |
在本章中,我们将了解PySpark的环境设置。注 - 这是考虑到您的计算机上安装了Java和Scala。现在让我们通过以下步骤下载并设置PySpark。第1步 - 转到官方Apache Spark 下载 页面并下载 ...